Estimation of Second Hand Exposure Levels from ENDS and Conventional Cigarette Use Using Computational Modeling

Ali A. Rostami ${ }^{a}$, Samuel Agyemang ${ }^{b}$, Yezdi Pithawalla ${ }^{a}$, Jeff Edmiston ${ }^{a}$, George Karles ${ }^{a}$
${ }^{a}$ Altria Client Services LLC, USA
${ }^{b}$ TriMech Solutions LLC

Altria

Altria Client Services

Tobacco Harm Reduction Summit Athens, Greece, June 8-9, 2018

Objective

Use computational modeling, validated by experimental data, as a tool to estimate concentrations of aerosol constituents in several confined spaces where ENDS or combustible cigarettes are used.

Two Types of Computational Models

Models based on principles similar to those used in the indoor air quality assessment models, referred to by the EPA

Well-mixed Model

- Total, vapor and particulate concentrations of each constituent in air
- Average values for the entire space as a function of time

Distributed CFD Model

- Total, vapor and particulate concentrations of each constituent in air
- Spatial and temporal distribution inside the space

Exhaled Aerosol (ENDS) vs. Cigarette: Model Comparisons

Define	No. of Occupants/
Domain	No. of Tobacco Product users

Frequency of product use (i.e. cig/day, mg liquid/day)

Rate of intake of released constituents by non-users

Total release in time period

Total exposure for nonusers per time period

(1) Space Settings

Sedan car (3.17m $\left.{ }^{3}\right)^{*}$

* Two cases:
(1) Closed windows
(2) Driver and passenger windows open 3 inches

Restaurant (270 m ${ }^{3}$)
(2) Number of users and duration of use

	Number of occupants	Number of users	Duration of use (hr)
Car (closed windows)	4	2	1
Car (open windows)	4	2	1
Meeting room	15^{a}	3^{b}	4
Restaurant	100^{a}	15^{b}	2

a Maximum capacity: ANSI/ASHRAE Standard 62.1-2004, Ventilation for Acceptable Indoor Air Quality
b 15.1% of adult population (CDC, 2016)- rounded up for the meeting room.

(3) Product consumption

Cigarette: 14.1 cigarettes per day per user (CDC 2016)
MARKTEN ${ }^{\circledR}$: 902 mg per day (daily cartridge weight change [in-clinic 16hrs ad libitum use, ALCS, unpublished data])

(4) Constituents released per unit base

* Side stream deliveries for Kentucky Reference 1R4F

Constituent	ug per cigarette consumed * side stream) *	ug exhaled $/ \mathrm{mg}$ consumed $^{\star \star}$
Nicotine	5,600	4.22
Formaldehyde	700	0.0083
Glycerin	NA	162.11
PG	NA	83.86
Acetaldehyde	4,200	BDL
Acrolein	1,300	BDL
Menthol	NA	0.53

Side stream smoke is the primary source of second hand exposure. Contributions from the exhaled smoke are not included here.

[^0]
(5a) Rate of release by all users: cigarette

Space	Number of occupants	Number of users	Total (all users) release rate ($\boldsymbol{\mu g} / \mathrm{hr}$)			
		Nicotine	Formaldehyde	Acetaldehyde	Acrolein	
Meeting Room	$15^{\text {a }}$	$3^{\text {b }}$	16,800	2,100	12,600	3,900
Car (closed windows)	4	2	11,200	1,400	8,400	2,600
Car (open windows)	4	2	11,200	1,400	8,400	2,600
Bar/restaurant	$100^{\text {a }}$	15	84,000	10,500	63,000	19,500

(5b) Rate of release by all users: MARKTEN ${ }^{\circledR}$ e-vapor

Space	Number of occupants	Number of users	Total (all users) exhaled rate ($\mu \mathrm{g} / \mathrm{hr}$)				
			Nicotime	Glycerol	PG	Formaldehyde	Menthol
Meeting Room	$15^{\text {a }}$	$3{ }^{\text {b }}$	714	27,418	14,183	1.4025	89.634
Car (closed windows)	4	2	476	18,278	9,456	0.925	59.756
Car (open windows)* *	4	2	476	18,278	9,456	0.925	59.756
Bar/restaurant	$100^{\text {a }}$	15	(3,569)	137,085	70,915	7.0125	448.17

96% reduction
99.9\% reduction
a. Maximum capacity: ANSI/ASHRAE Standard 62.1-2004, Ventilation for Acceptable Indoor Air Quality
b. Slightly higher than CDC report cited earlier (15.1% of adult population)- for both cigarette and e-vapor users

Estimated Non-users Intake

Total intake of nicotine during exposure time by non-users ($\mu \mathrm{g}$)

	Duration (hour)	Intake $(\mu \mathrm{g})$ (Cigarette)	Intake $(\mu \mathrm{g})$ (MARKTEN® e-vapor)
Car (closed windows)	1	50.95	2.07
Car (open windows)	1	24.37	1.01
Meeting room	4	158.6	6.57
Restaurant	2	41.39	$1.75 \quad 96 \%$ reduction

Total intake of formaldehyde during exposure time by non-users ($\mu \mathrm{g}$)

	Duration (hour)	Intake $(\mu \mathrm{g})$ (Cigarette)	Intake $(\mu \mathrm{g})$ (MARKTEN® ${ }^{\text {evapor) }}$
Car (closed windows)	1	6.36	0.00408
Car (open windows)	1	3.04	0.00199
Meeting room	4	19.83	0.01291
Restaurant	2	5.17	$0.00345) 99.9 \%$ reduction

MARKTEN ${ }^{\circledR}$ e-vapor vs Cigarette (average concentrations)

Nicotine

Nicotine concentration in air from MARKTEN ${ }^{\circledR}$ e-vapor use is significantly less than cigarette use

* The OSHA PEL refers to the permissible limit of the total average airborne exposure in any 8-hour work shift of a 40hour work week which shall not be exceeded.

Formaldehyde due to exhaled aerosol

Formaldehyde

Formaldehyde concentration in air from MARKTEN ${ }^{\circledR}$ e-vapor use is substantially less than cigarette use

[^1]
Nicotine Concentration Distributions Restaurant Example

Average nicotine concentration over time

15 individuals use one cigarette per hour for two hours

- 15 individuals use MARKTEN ${ }^{\circledR}$ e-vapor at an equivalent rate of use

Nicotine concentration distribution

- 5 individuals use MARKTEN ${ }^{\circledR}$ e-vapor 13

Altria Client Services I Georgios Karles, Managing Director

Other Constituents

Average propylene glycol concentration in air ($\mu \mathrm{g} / \mathrm{m}^{3}$)

	Cigarette	MARKTEN $^{\circledR}$ e-vapor	AIHA Limit
Car (closed windows)	N/A	114.74	36,0000
Car (open windows)	N/A	56.09	36,0000
Meeting room	N/A	90.66	36,0000
Restaurant	N/A	48.54	36,0000

Average glycerin concentration in air ($\mu \mathrm{g} / \mathrm{m}^{3}$)

	Cigarette	MARKTEN $^{\circledR}$ e-vapor	OSHA PEL
Car (closed windows)	N/A	221.81	5,000
Car (open windows)	N / A	108.44	5,000
Meeting room	N / A	175.27	5,000
Restaurant	N / A	93.84	5,000

$\mathrm{N} / \mathrm{A}=$ Release rate not reported in side stream smoke

Conclusions

- We have estimated the concentration of constituents in air due to exhaled aerosol from use of the MARKTEN ${ }^{\circledR}$ e-vapor and compared with that of using conventional cigarettes and with the permissible limits of OSHA* and AIHA
- Three space settings were used as examples in the study: (1) A car (open and closed windows), (2) a meeting room and (3) a restaurant.
- Results from the computational models show that nicotine and formaldehyde concentrations in air from the use of MARKTEN ${ }^{\circledR}$ evapor are significantly less than cigarette under equivalent use conditions.
- PG and glycerin levels in air from MARKTEN ${ }^{\circledR}$ e-vapor use were orders of magnitude less than OSHA and AIHA limits in all three spaces that were studied.
- Finally, intake amounts of each constituent by Non-users during the example use of MARKTEN ${ }^{\circledR}$ and cigarettes were calculated.

[^2]
Additional Supporting Slides

Non-user Exposure Characterization Models

OUTCOMES

INPUT VARIABLES

Physics-based models that include fluid flow, mass and heat transfers along with thermodynamic and kinetic interactions

Model Verification and Validation

Verification

Conditions

- Space volume : $100 \mathrm{~m}^{3}$
- Air change rate : 5 ACH
- Number of occupants in room : 15

Duration: 2 hours

- Rate of release of constituent : $10 \mathrm{mg} / \mathrm{hr}$

Validation (1)

Conditions

- Space volume : $39 \mathrm{~m}^{3}$
- Air change rate (ACH) : 6.8 (runs 2-4), 9.8 (run 1)
- Smoking machine generated aerosol
- Duration: 1 hour
- Rate of release of constituent : 7 puffs (runs 1, 2) and 15 puffs (runs 3, 4)

Room volume 112 m³

Controlled Clinical Study*:

- 9 individuals-10 puffs every 30 min for 4 hours on a cig-a-like e-vapor product
- 5 s puff duration
- Measured room air levels of selected constituents over 4 hours

Validation (2)

Modeling vs. Experimental Result

Average concentration over 4 hours

Other Constituents

Average acetaldehyde concentration in air ($\mu \mathrm{g} / \mathrm{m}^{3}$)

	Cigarette	MARKTEN $^{\circledR}$ e-vapor	OSHA PEL
Car (closed windows)	34.12	0	36,0000
Car (open windows)	16.32	0	36,0000
Meeting room	26.56	0	36,0000
Restaurant	13.86	0	36,0000

Average acrolein concentration in air ($\mu \mathrm{g} / \mathrm{m}^{3}$)

	Cigarette	MARKTEN $^{\circledR}$ e-vapor	OSHA PEL
Car (closed windows)	106.15	0	250
Car (open windows)	50.80	0	250
Meeting room	82.63	0	250
Restaurant	43.12	0	250

[^0]: *Guerin et. al., The Chemistry of Environmental Tobacco Smoke: Composition and Measurement, 1992, p56
 ${ }^{* *}$ Edmiston et al. (2018), Exhaled Breath Levels of Selected Constituents From Controlled Use of MARKTEN ${ }^{\circledR}$ e-Vapor Products in Adult e-Vapor Users, Poster 191, February 24, SRNT 2018, Baltimore, MD.

[^1]: * The OSHA PEL refers to the permissible limit of the total average airborne exposure in any 8-hour work shift of a 40hour work week which shall not be exceeded.

[^2]: *The OSHA PEL refers to the permissible limit of the total average average airborne exposure in any 8 -hour work shift of a 40-hour work week which shall not be exceeded.

